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A GENERALIZED LEAST-SQUARES DETERMINATION OF TRIAXIAL STRESS
STATES BY X-RAY DIFFRACTION AND THE ASSOCIATED ERRORS

R.A. Winholtz and J.B. Cohen

Department of Materials Science and Engineering

The Technological Institute

" Northwestern University
Evanston, IL 60201, USA

4§§S‘ACT

The determination of residual stresses via x-ray diffraction
is briefly reviewed, with particular emphasis on the triaxial
stress state. A nevw method is proposed for determining the
general stress tensor, which considerably reduces the variances
of the stresses due to counting statistics and gradients. The
procedure involves a generalized least¥square solution of strains
measured at various tilts of the x9ray beam to the sample, and a
set of tilts not heretofore used is recommended to minimize these
errors.

1. INTRODUCTION

X-ray diffraction can be wused to determine stresses by
measuring the changes in interplanar spacing in a crystalline
material. Classical stress determination using x-ray diffraction
assumes a biaxial stress state where the stresses normal to the
surface are zero. This assumption leads to equations from which
the stress along the measurement direction oy may be determined
from the slope of a d versus sin’? plot (Noyan and Cohen 1987).
The angles ¢ and § are defined in Figure 1 and d is the
interplanar spacing perpendicular to the Ls axis.

Triaxial stress states cause curvature in the d versus sin?§
plots (Noyan and Cohen 1984). This curvature has been observed
in several experimental studies (Délle and Cohen 1980; Ho et

al. 1983). The presence of a stress normal to the surface, o33,

will cause curvature in d versus sin'q plots while the shear
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stresses 013 and o023 produce different curves for negative and
positive §-tilts (§-splitting). Délle and Hauk have extended the
classical stress analysis theory to include the determination of
triaxial stress states (D6lle and ﬂauk 1976; Ddlle 1979).
This method uses the average strain for positive and negative
J-tilts versus sin?J at ¢ equal to 0°, 45°, and 90° to determine
the stresses o011, 022, 033, and o12. The stresses oi1a and 023
are determined from plots of the difference in strain for
positive and negative §-tilts versus sin2{.

In this paper a g¢generalized 1least-squares method of
determining triaxial residual stresses from diffraction data is
presented. Being able to estimate the errors associated with a
measurement is also quite important. Errors due to counting
statistics and stress gradients with the DAlle-Hauk method have
been investigated by Rudnik and Cohen (1986), Noyan (1983), and
Noyan and Cohen (1980). These errors are investigated for the
generalized least-squares method and it is shown that the method

is less sensitive to errors than the Délle-Hauk method.

2. THEORY

Consider the two coordinate systems in Figure 1. The
P-coordinate system 1is attached to the sample and is the
coordinate system in which it is desired to measure the stresses,
The L-coordinate system is the laboratory system and is the

system in which the diffraction measurements are made. The two
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coordinate systems are oriented with respect to each other by the
angles ¢ and §. One may determine the interplanar spacing along
planes perpendicular to the Ls axis, dey, from the position of a
diffraction peak. By knowing the unstressed planar spacing 4,
one may determine the strain along the Ls axis.
dey - do
ey = — (1)
do .
Noyan (1985) discusses several methods of determining do. Using
tensor transformations the strains in the P-coordinate system may
be related to the stain along the L3 axis as
est = c11cos?gsin?§ + e22s5in?gsin?§ + caacos?f +
¢125in2¢sin?f + eiacosgsin2¥ + e23singsin2y. @
The ¢13y refer to strains in the sample coordinate system while
eey refers to strains measured in the laboratory coordinate
systenm.

Equation 2 shows that the measured strains, eyy, are linear
with respect to the strains in the sample coordinate systenm.
Measuring strains in six independent directions 1is therefore
sufficient to determine the strains ¢13 (Nye 1976). The accuracy
may be improved by measuring more than six strains eyy and
determining the strains €14y by a least-squares procedure (Imura
et al. 1962).

To facilitate a matrix formulation of the least-squares

procedure the following definitions are made:
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g1 = €11 fi(s,§) = cos?gsiniy
€3 = €23 f2(s,9) = sin?gsin?y
€3 = €33 f3(s.§) = cos?y

te = 812 fe(s,9) = sin2¢sindy
ts = €13 fs(s,¥) = cosgsin2l
te = t23 fe (#,9) = singsin2f .

The residual between the measured and calculated strain along the

La axis is

L]
rn = [ esfslsr,§1) - et (3)
=1

The total weighted sum of the squared error, R, for n
measurements of e is then :
1

R =
1

i

! var(ei) J

I g B
" g O

eyfy (g1, P1)] - e} . (4)
1

Each error ri1 is weighted by the inverse variance associated with
the corresponding strain e:. Equations exist for estimating
these variances from the diffraction data (James and Cohen 1977)
as discussed below. Thus, the most reliable measurements are
wveighted the most. Taking the partial derivative with respect to
each strain ¢; and setting them equal to zoro to find the

minimum, results in the set of equations:

f.’ (’l lUl)

n
o

a 6
I [(f exful{g1,Us1) - e1] (s)

=1 k=1 var(e1)

To formulate a matrix equation the B-matrix and E-vector are

defined as

[ ] fJ (¢1 'v1 )fk (’l Ivl)

Bjx = [ . (6)
1=1 var (e1)
]

Es = I eify(s¢1,01)/var(er) . (N

-
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Provided that the strains are measured at ¢ and ¥ angles that do
not form a singular B-matrix, the strains giving the least
squared error are given by the solution of the equation:

Be = E , (8)

or

¢ = B-'E . (9)

Vhen the strains have been determined the stresses may be
determined from the relations:
1 St

{e1y -81g—m - (€11 + €22 + £33)] (10)
S2/2 S2/2 +38)

o1y =

where S: and S2/2 are the appropriate x-ray elastic constants
{Marion and Cohen 1977; Perry et al. 1984) and 3815 is the
Kronecker delta function. The stresses may also be obtained
directly by substituting o for ¢ and the functions ¢y for the

functions fy in Equations 6, 7, and 8, where:

g1(s,¥) = (cos?gsin?l¥)S2/2 - 8

g2(s,¥) = (sin?gsin?{)S2/2 - &

ga(s,¥) = (cos?¥)S2/2 - S (11)
ge(8,9) = (sin2¢sin3y)S2/2

gs(s,¥) = (cosgsin2®P)Sz2/2

ge (8,9) = (singsin2§)s2/2 .

3. COUNTING STATISTICAL ERRORS

An estimate of the errors associated with a measurement is
nearly as important as the measurement itself. In determining
interplanar spacings by x-ray diffraction, intensities at
different points along a diffraction peak are measured to

determine the peak position, 26. The interplanar spacing may




LB A & A

then be determined from Bragg's law., The intensity measurements

are subject to statistical counting error. James and Cohen
(1977) give formulae for determining the error in 20 from the
intensity measurements. Estimates of the errors in 26 can also
be determined from nonlinear least-squares fits of peaks to
analytical functions.

The variance in e is computed from the variance in 26 by
(Rudnik and Cohen 1986):

1 o ncos®  var(20)

var(e) = (—=)¥(—)3( )3 ' (12)
do 180 2sin2e 2

where var(20) is given by the peak location method. The variance
in the strains ¢; may be calculated from the variance in each of

the measured strains

o Ot
var{ey) = I (—)? var(e:) . (13)
121 de

The variance in do 1is not considered here but may also be
included (Rudnik and Cohen 1986). The errors in the measured
strains can be propagated through Equation 9 by using Equation 12
to determine the variance in each of the strains ¢y

"YU ! f; (#1,U1)

var{ey) =1 (I B~ —
t1=1 J=1 kJ var(el)

)3 var(ey) . (14)

The variance in each strain value may be evaluated from Equation
13 and used to propagate the error to the stresses using
Equations 10 and 12. The errors in the measured stresses may
then be estimated from the standard deviations given by the

square roots of the variances
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1 S
var(ot1) = ( - )3var(e1)
S2/2 S2/2(S2/2 + 38:)

(15a)
St
+ | )3 {var(ey) + var(ex))
S2/2(S2/2 + 38:1)
iijok =2 1,2,3
1
var(oa) = ( Yivar(ea) n=4,56. {15b)
S2/2

The counting statistical errors for the D&lle-Hauk method
and the generalized least-squares method are compared in Table 1.
The diffraction data is taken from sample C3 in Ddlle and Cohen
(1980). The sample is a normalized plain carbon steel ground
along the P: direction. The results for the D6lle-Rauk method
were calculated using the same program that was used for the
calculations in Rudnik and Cohen (1986). The value of d. was
assumed to be known exactly. The standard deviations of the peak
positition, 20, vere all of the order of 0.012°. These results
show that the propagation of error through a generalized least-
squares method results in improved counting statistical errors
over the Doélle-Hauk method. In the generalized least-squares
method each strain measurement e1 contributes to the
determination of each strain ¢; to which it is not orthogonal in
Equation 2. This is a more efficient use of the available data
than the D&lle-Hauk method and results in the improved counting
statistical errors.

The counting statistical error in Equation 15 depends only

on the errors in e; and not on the actual values., The tensor of
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counting statistical errors will thus be independent of the
stress tensor and depends only upon the accuracies to which the
interplanar spacings are measured.

It is possible to optimize g1 and §; to minimize the counting
statistical errors so that the measurement time to achieve a
given error may be minimized. Another consideration, however,
is that it is still highly desirable to have a number of {-tilts
along a constant value of g so that de¢ versus sin?¥ plots may be
made. These plots provide a valuable visual check that the
strains in the sample follow the theory and that the sample was
properly aligned during the diffraction measurements (Noyan and
Cohen, 1987).

Table 2 illustrates a comparison Dbetween wuse of the
"traditional"” set of ¢ angles 0°, 45°, and 90° and using the set
of 0°, 60°, and 120°, The data is a computer simulation for a
steel sample vwith Cr Ka radiation. Each strain was assumed to
have an error of 0.0001. While the normal stresses have the same
errors, the errors in the shear stresses are reduced by using ¢
equal to 0°, 60°, and 120°. Thus a greater precision may be
obtained in the shear stresses by simply using 0°, 60°, and 120°

for # instead of 09, 45°, and 90°.

4. ERRORS DUE TO GRADIENTS

Noyan (1983) and Noyan and Cohen (1984) have examined the

effect of gradients in the stresses on the measurement of
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stresses by x-ray diffraction. Since the stresses normal to the

surface must be zero at the surface, these stresses must exist as
gradients in the sample. The stresses measured by x-ray
diffraction are averages measured over the penetration depth of
the x-ray beam. In making the measurements, however, the sample
must be tilted at different angles to the x-ray beam which gives
a different sampling depth for each tilt. Thus the stresses form
a different average for each tilt of the sample. Stress
gradients, therefore, lead to curvature (but not y-splitting) in
d versuss sin2?§ plots and ;rrors in the measured values of the
stresses.
The average stress sampled by an x-ray beam is given by
J: o13(z) expl-z/7) dz
(013> = ' (16)

J: o13(z) dz

where z is the depth into the sample and 1 is given by:

sin2?@ - sin¢§
T = . (17
2y sin® cosl

for §-tilts around the 6-axis (§-goniometry) and by:
sin® cosl
1= -, (18)
2p
for {§-tilts around an axis parallel to the plane of the

diffractometer (Q-goniometry).

If we assune, for instance, stress gradieats of the form

g13(2) = 0135(0) + ayyzod (19)
the average stress becomes
015> = 013(0) + Kufnu . (20)
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ot where Kisy 1is a constant. This equation shows that the average
stress sampled by the x-ray beam is a function of r which is a
) function of the angle §.
W When stress gradients are present, as  given for example by
Equation 19, instead of constant stresses as assumed by the
¢ theory, the trigonometric dependence will not be as simple as
given in the above equations for f;(s,J) or gs(s,¥). There will
be a systematic deviation from the theoretical dependence on ¢
and § due to 71, which is a function of §. The averaged stress is
1 further dependent on the wunknown gradient. This systematic
deviation will cause some error in the measured stress values
when Equation 2 is forced to fit the data by any procedure.
'{ To determine the effect and magnitude of these g¢gradient
errors and to determine methods to minimize them, computer
B simulations of stress measurements on samples containing stress
;, gradients were performed similar to those in Noyan (1983) and
v Noyan and Cohen (1984).

In the computer simulations the sample was assumed to be
steel and the measurements done with Cr Ka radiation for the 211
diffraction peak at 156° 20 for several different stress
gradients. The stresses in the plane of the sample surface o1
and o022 were assumed to be uniform. Gradients of the form of
8 Equation 19 were used to calculate an average stress sampled by
‘ the x-rays for each §-tilt. Equation 18 for Q-goniometry was
. used to determine the value of Tt at each U-tilt. A linear
absorbtion coefficient of y = 0.09 pm-! was used. The measured

strain values, e;, were calculated and these were used to
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calculate the measured stresses by the generalized least-squares
procedure. Different J-ranges were tested with ¢ equal to 0°,
60°, and 120° in all cases,

Four groups of stress tensors with different gradients were
examined to determine the effects of gradients in the different
components of the stress tensors. The constants, Kij, vere
selected to give a value of stress oaz of about 100 MPa for a
J-range of 0° to 60° except for the second group of stress

tensors for which ag33 was zero.

(a) Group I

In group I tensors of the form

-400 0 0
g = 0 -400 0
0 0 Krs

were examined for n equal to 1, 2, and 3. Table 3 shows the
results of the computer simulation with different ¢-ranges for
the measurement while Figure 2 shows the error in the stress o1
as a function of the Qeasured stress ocas for different values of
n for the ¥-range 0-60°. This data shows that the measured value
of stress oi11 can be greatly affected by a gradient in o33,
especially for ;ow ¥-ranges. This table also shows that this

error can be minimized by using high §-ranges.




{b) Group II

Group II tensors were of the form

~-400 + Ko 0 0
o= 0 ~400 + K710 0
0 0 0

Here the the gradient was in the stresses oi11 and o022 and the
stress o033 was absent. Again (see Table 4) the high {§-range
gives the least error in the normal stresses while the low §-
range gives the greatest error. The nonzero values of o033 are

due to the forced fitting of Equation 2 to the data.

{c) Group III

Combined gradients with tensors of the form

-400 + Kyp1on 0 0
o= 0 -400 + K11 70n 0
0 0 Kaartes

were examined in group III. Both positive and negative Kis were
used since values of Kiix and Kizas with the same sign have the
opposite effect on the curvature in a d versus sin?y plot (Cohen
et al. 1980). Table 5 shows the results from the group III
tensors. When Kii1 and Kia have the same sign the error in oi1:
nearly cancels out depending on the U-range. The low J-range

again gives large errors. When Kii and Kii are of-opposite sign
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and produce the same curvature in d versus sin’?, the high

§-range again gives the smallest error in o,.

{d) Group 1V

To test the effect of combined gradients in 033 and o131 group

IV tensors were of the form

-400 0 Kizr?
0= 0 -400 0

Kaat? 0 Kiysr1?
The results of these tests are shown in Table 6. Once again, the
smallest error in the normal stresses is with the high {-range.
The magnitude of o133 decreases with increasing §-range. This is
to be expected as the penetration depth of the x-rays decreases
with § and the high §-ranges sample less of the gradient in oy3.
Noyan and Cohen (1984) found that the Ddlle-Hauk method gave very
sporadic results for o012 depending on the {@-range, sonetimes
giving the wrong sign. The generalized least-squares method is
much more consistent with respect to these shear stresses and

will give much more reasonable values for them independent of the

§-range.
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o 5. CONCLUSIONS
ey
3
4&3} 1) A generalized least-squares method of analyzing
, diffraction data to determine triaxial stress states was
%g; presented along with equations to estimate the statistical
'QE? counting error associated with the measurements. The calculations
e for a typical triaxial stress measurement such as the one in
f;i{ Table 1 take only a few seconds on a personal computer,
b?f Computation time 1is therefore insignificant 1in using this
e analysis method and it is well suited for use in an automated
éé?A stress measurement systenm.
;?3 2) The d versus sin?y plots are a valuable visuval check on
o the data and should be used and checked against the results for
;}3: reasonableness.
*%1 3) The use of ¢ equal to 0°, 60°, and 120° will give lower
. counting statistical error than the traditional values of 0°,
ég? 45°, and 90° for the shear stresses.
AE& 4) High $-ranges minimize the errors in the normal stresses
. due to stress gradients in the sample. The shear stresses o013
%Eﬁ and o023 are adequately measured with any Y-range, lower §-ranges
%2? sampling more of their gradient. The method will not give the
ﬁ;: wrong sign for these stresses as can the Délle-Hauk method.
&%- 5) The (generalized least-squares method gives lower
;ﬁ; statistical counting errors than the DOlle-Hauk method, and
smaller errors due to the presence of stress gradients in the
sample.
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FIGURE CAPTIONS

FIGURE 1. The coordinate system.

FIGURE 2. Errors due to a gradient in o,,
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Table 1.

A comparison of the counting statistical errors in the strain and
stress (MPa) tensors for the Dolle-Hauk method and a generalized
least-squares method*.

[ 1.649 -0.139 -0.226 0.088 0.087 0.026
¢ = |-0.139 1.721 0.013 | X 103 = 0.087 0.080 0.021 | X 109
-0.226 0.013 -1.001 0.026 0.021 0.064
[ 539.74 -24.03 -39.15 ] 27.08 15.05 4.58 ]
o = -24.03 552.16 2.30 t | 15.05  25.30 3.56
-39.15 2.30 80.41 4.58 3.56  21.97
J J

(a) Délle-Hauk

[ 1.515 -0.045 -0.234 0.036 0.043 o0.010
t = |[-0.045 1.888 0.029 | X 10-3 ¢ 0.043 0.031 0.009 | X 10-3
L-0.234 0.029 -0.936 0.010 0.009 0.010
[ 527.04 -7.90 -40.48 10.713 7.39 1.72
g = -7.90 591.73 4.99 t 7.39 9.59 1.53
L -40.48 4.99 49.817 1.72 1.53 5.82

(b) Generalized Least-Squares

*The data is from a ground steel sample. Analysis from the Délle-Hauk
method is given in (a) and from a generalized least-squares method
in (b).
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Table 2.
A comparison of the counting statistical errors in the strain and
stress (MPa) tensors for the use of (a) ¢ = 0°, 45°, and (b) 90°
and ¢ = 0°, 60°, and 120° *,
[ 9 [ 9
1.308 0.000 0.000 0.117 0.117 0.031
0.000 1.308 0.000 | X 10-3 2 0.117 0.117 0.031 | X 10-3
L 0.000 0.000 1.000 0.031 0.031 0.039
I 1
-400.00 0.00 0.00 35.43 20.24 5.44
0.00 -400.00 0.00 : 4 20.24 35.43 5.44
0.00 0.00 0.00 5.44 5.44 20.91
p
(a) ¢ = 0°, 45°, and 90°
[ 1.308 0.000 0.000 0.117 0.078 0.030
0.000 1.308 0.000 | X 10-3 ¢ 0.078 0.117 0.030 { X 10-8
0.000 0.000 1.000 0.117 0.030 0.039
L
r - -
-400.00 0.00 0.00 35.43 13.49 5.13
0.00 -400.00 0.00 t 13.49 35.43 5.13
0.00 0.00 0.00 5.13 5.13 20.91
L - -
(b) ¢ = 0°, 60°, and 120°
*The results are a computer simulation for a steel sample measured
with Cr Ka radiation at 20 = 156°. Each strain was assumed to
have an error of 0.0001.




i Table 3.

Computer Simulation Results for Group I Stress Tensors.

\J
bﬁ? n3s3 Kaa §-Range O11 g33 [o11 - 011 ]
sty (Degrees) (MPa) (MPa) (MPa)

22.6764 0.00 - 60.00 -422.6 100.0 22.6
22.6764 0.00 - 33.21 ~476.0 19.4 76.0
22.6764 39.23 - 60.00 -407.5 88.3 7.5

.
,
[S RSN

5.0243 0.00 - 60.00 -442.8 100.0 42.
5.0243 0.00 - 33,21 -564.2 52.6 164.
5.0243 39.23 - 60.00 -411.5 76.5 11.

NN
U

1.0920 0.00 - 60.00 -460.7 100.0 60.
.0920 0.00 - 33.21 -661.6 20.8 261.
1.0920 39.23 - 60.00 -413.2 65.3 13.
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Table 4.

Computer Simulation Results

- - -"wuw'-t!-T

for Group II Tensors

nit Ki1 P-Range O11 033 Error in on

(Degrees) {MPa) (MPa) (MPa)
1 10.00 0.00 - 60.00 -366.2 -5.1 33.8
1 10.00 0.00 - 33.21 -337.8 5.2 62.2
1 10.00 39.23 - 60.00 -374.4 0.7 25.6
2 2.50 0.00 - 60.00 -367.17 -10.7 32.3
2 2.50 0.00 - 33.21 -307.5 12.8 92.5
2 2.50 39.23 - 60.00 ~383.2 0.9 16.8
3 0.55 0.00 - 60.00 -369.8 -13.9 30.2
3 0.55 0.00 - 33.21 -282.2 20.8 127.8
3 0.55 39.23 - 60.00 -389.9 0.7 10.1




Table 5.

Computer Simulation Results for Group III Tensors

N1 Kia n3a Kas ¥-Range o114 033 o1 - o1y |

{Degrees) {MPa) (MPa) {MPa)
1 10.0 2 5.0 0.00 - 60.00 -408.17 93.8 8.7
1 10.0 2 5.0 0.00 - 33.21 -501.3 57.6 101.3
1 10.0 2 5.0 39.23 - 60.00 -385.9 76.9 14.1
2 2.0 2 5.0 0.00 - 60.00 -416.17 91.0 16.7
2 2.0 2 5.0 0.00 - 33.21 -489.4 62.6 89.4
2 2.0 2 5.0 39.23 - 60.00 -398.0 76.9 2.0
1 -10.0 2 5.0 0.00 -~ 60.00 -476.4 106.2 76.4
1 -10.0 2 5.0 0.00 - 33.21 -625.6 47.1 225.6
1 -10.0 2 5.0 39.23 - 60.00 -437.0 75.4 37.0
2 -2.0 2 5.0 0.00 - 60.00 -468.4 105.1 68.4
2 -2.0 2 5.0 0.00 - 33.21 -637.4 42.1 237.4
2 -2.0 2 5.0 39.23 - 60.00 -424.9 75.4 24.9
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Table 6.

o Computer Simulation Results for Group IV Tensors

" Rais K33 ¥-Range O11 gas Ci3 |011 - Oxxl
(Degrees) (MPa) (MPa) (MPa) (MPa)

0.00 - 60.00 -442.6 99.5 76.
0.00 - 33,21 -563.4 52.3 111.
39.23 - 60.00 -411.5 76.1 59.

42.6
163.4
11.5

s
NN
wvrovon
S
OO
INE R

0.00 - 26.57 -- -- 121.
33.21 - 45.00 -- -- 80.
50.77 - 60.00 -- -- 44.2 ==
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